Crowdsourcing for Big Data Analytics

Hisashi Kashima (Kyoto University)
Satoshi Oyama (Hokkaido University)
Yukino Baba (Kyoto University)
Crowdsourcing for data analytics

Part I: Crowdsourcing for data analytics (Hisashi Kashima)

Part II: Crowdsourcing for datafication (Satoshi Oyama)

Part III: Crowdsourcing for analysis (Yukino Baba)

Part IV: Future direction (Yukino Baba)

Tutorial slides are found at

http://goo.gl/Amif93
Part I: Crowdsourcing for data analytics
Big challenge in big data analytics: Manpower bottleneck

- Automatic data analysis techniques (e.g. machine learning) are often considered as main components of data analytics
- Data analysis is heavily labor intensive
 - Manual processing dominates a large portion of data analysis process
 - 1990s-2000s: introduction of data mining techniques and data analysis process standards (e.g., CRISP-DM)
Big shortage of data scientists: Implies labor intensity of data analysis

- “By 2015, 4.4 million IT jobs globally will be created to support big data”, but “only one-third of the IT jobs will be filled”
 - Peter Sondergaard (Senior VP at Gartner)

- “Data Scientist: The Sexiest Job of the 21st Century”

- These statements imply the labor intensity of data analysis
Rise of crowdsourcing: On-demand access to massive on-line labor

- Crowdsourcing: Outsourcing human-intelligence tasks to a large group of unspecified people via Internet
 \[\leftrightarrow\] "outsourcing" offers tasks to specified contractors

- Advantage of crowdsourcing:
 - Volume: Access to a massive amount of human intellects
 - Quality: "wisdom of crowds"

Howe, J. Crowdsourcing. 2004
Two types of crowdsourcing: Explicit crowdsourcing and implicit crowdsourcing

1. Explicit crowdsourcing: directly asks for contributions
 – Marketplace (e.g., Amazon Mechanical Turk)
 – Volunteer (e.g., citizen science such as Galaxy Zoo)

2. Implicit crowdsourcing: embeds tasks into other forms in order to motivate worker participations
 – Unavoidable tasks (e.g., reCAPTCHA)
 – Games with purposes (e.g., ESP game)
Crowdsourcing marketplace: Online labor markets for explicit crowdsourcing

- Crowdsourcing marketplaces: Web services for connecting requesters with workers
 - Advantages for requesters: Access to on-demand workforce
 - Advantages for workers: New work style unbound by time or place

- Emergence of online crowd-labor marketplaces
 - Mechanical Turk, oDesk, Clickworker, ...

![Diagram of requester posting tasks through a crowdsourcing marketplace to crowd workers for task execution.](https://example.com/diagram.png)
Amazon Mechanical Turk: World-biggest microtask crowdsourcing marketplace

- Since established in 2005, a de-facto standard of crowdsourcing marketplace in computer science
 - 0.5 million workers from 190 countries (in 2011)
 - can access human intelligence on-demand

- Automatic creation of tasks through API

Extraction of purchase information from a receipt

<table>
<thead>
<tr>
<th>Extract purchased items from a shopping receipt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requester: Jon Brelig</td>
</tr>
<tr>
<td>HIT Expiration Date: Oct 31, 2013 (6 days 23 hours) Reward: $0.06</td>
</tr>
<tr>
<td>Time Allotted: 2 hours HITs Available: 24394</td>
</tr>
<tr>
<td>Description: Transcribe all the purchased items and total from a shopping receipt</td>
</tr>
<tr>
<td>Keywords: image, receipt, categorize, transcribe, extract, data, entry, transcription, text, easy, qualification, secure, prod</td>
</tr>
<tr>
<td>Qualifications Required: None</td>
</tr>
</tbody>
</table>

6-cent reward
Task types in crowdsourcing marketplaces:
Simple, structured tasks to complex, unstructured tasks

- **Very easy tasks:**
 - Image labeling, entity resolution, format checking...
 - Output format: Yes/No

- **Easy tasks:** Restaurant reviews, web service tests, ...
 - Output format: Multiple-choice or short sentences

- **Tasks requiring some expertise:** Logo design, report writing, ...
 - Output format: Images or sentences

- **Complex tasks requiring high level of expertise:**
 - Web/software developments, professional work, ...
 - Output format: System, codes, documents

Microtasks:
Popular in computer science
reCAPTCHA: A "Turing test" distinguishing humans and machines

- System shows two text images to a user and asks to read both
- Character recognition is difficult for computers but easy for humans, only human can pass the test
Implicit crowdsourcing of reCAPTCHA: Use system logs for document digitization

- The system knows the correct answer of only one of the two words
- The other is a word that OCR systems fail to recognize
 - Users are forced to help document digitization

CORRECT ANSWER: DONOVAN

“Pleasure” and “Donovan”
Trend in academic research: Exponential growth of crowdsourcing research

- 2005: Amazon Mechanical Turk was launched
- 2006: “crowdsourcing” and ”human computation” were advocated
- 2013: 1st conference on human computation and crowdsourcing (HCOMP)

#papers related to crowdsourcing

![Exponential growth graph](image)

Counted using Google Scholar
Crowdsourcing in computer science:
Popular use in NLP, CV, HCI, DB, IR, ML/DM, ...

- NLP: text understanding, annotation, language translation
- CV: image understanding, annotation, detection
- DB/IR: data generation/integration, search, evaluation
- ML/DM: data collection/annotation

Microtasks are automatically issued for SQL execution

Franklin et al. CrowdDB: Answering Queries with Crowdsourcing. VLDB 2011.
Example of crowdsourcing in DB research: Data generation and comparison

- CrowdDB uses crowdsourcing for

1. Data generation

2. Data comparison:
 - Identity test of two data instances
 - Sorting data instances

Franklin et al. CrowdDB: Answering Queries with Crowdsourcing. VLDB 2011.
Crowdsourcing for data analytics: Crowdsourced execution of data analysis process

- Use the power of crowds with various knowledge/skills to execute the labor-intensive data analysis process

- needs business knowledge
- needs to be close to data sources
- needs some domain knowledge/skills
- needs data analysis skills
- needs domain knowledge

Process execution by crowds
Crowdsourcing usages in data analysis: Datafication and analysis

- Data analysis process is divided into two parts:
 1. Datafication: data collection, data cleansing, annotation, ...
 2. Analysis: data modeling, visualization, evaluation, ...

![Diagram showing datafication and analysis process]
Crowdsourcing for datafication: Microtasks for data collection, annotation, and cleansing

- **Microtasks** for data annotation and cleaning
 - Suited for simple human-intelligence tasks:
 - Image labeling, speech recognition, ...
 - Small payment for a small piece of work
 - Large-scale datasets can be processed with reasonable costs
Crowdsourcing for analysis: Competitions, peer reviewing, ...

- **Competitions** for data modeling
 - Suited for creative/complex tasks:
 - Design, software development, analysis, ...
 - Winner-takes-all payment
 - A few high-quality results can be obtained

- **Peer reviewing** for assessing results
Technical issues:
Incentive design and quality control

- Incentive design
 - Crowdsourcing workers are not necessarily well-motivated
 - *Gamification* and reward optimization

- Quality control
 - Crowd-workers have different skills and motivations, and sometimes they are malicious
 - Quality of crowdsourcing results is uneven
 - *Statistical quality control methods*
Following parts...:
Crowdsourced datafication and analysis

Part II: Crowdsourcing for datafication
- data collection/computerization
- data cleansing/curation

Part III: Crowdsourcing for analysis
- modeling/visualization
- evaluation/interpretation
- analysis