紹介論文 Research 20: Social Network Analysis

"Analyzing Expert Behaviors in Collaborative Networks"

H. Sun, M. Srivatsa, S. Tan, Y. Li, L. Kaplan, S. Tao, X. Yan (IBMワトソン と University of California, Santa Barbara)

志賀元紀(岐阜大学)

KDD2014 読み会 京都大学・吉田キャンパス 2014年9月23日

論文で取り組んだこと

・共同作業ネットワークを用いた問題解決の振る舞いを調べる。 そして、問題解決の短時間化を目指す。

• 考えている状況

- 1. 誰かが問題(タスク)に気がつく。
- 2. 問題を解決できない場合、誰かに丸投げする。
- 3. 丸投げされた人も解決できなければ、他の人に丸投げ。
- 4. 誰かが解決できたら終了。 (「関わった人の数 = 取り組み時間」と考える。)

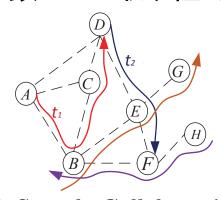
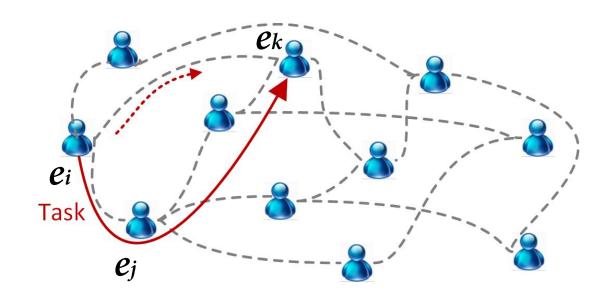
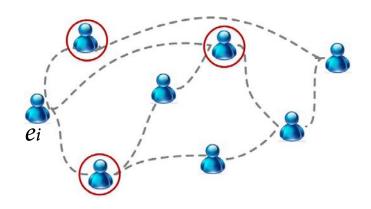



Figure 1: A Sample Collaborative Network

データから観測できたこと



- 類似タスクでも、丸投げルートがしばしば異なる。
- 最もタスク解決できそうな人に、直接タスクを 丸投げしていない。
- 丸投げ先の専門分野は、 自分の専門分野と近過ぎず、遠過ぎず。

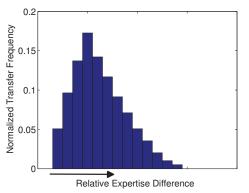
Expert Decision Logicのモデル1

ネットワークの近傍の中から候補絞り込むか?

Task-Neutral Routing (TNR)

候補を絞らない

Task-Specific Routing (TSR)


タスクに対する解決可能性 を予測して、絞り込む

ロジスティックモデルによって予測する。

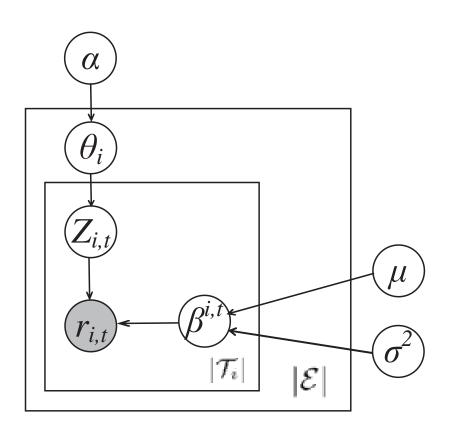
<u>Expert Decision Logicのモデル2</u>

丸投げ先候補から1人を選ぶ確率

- Uniform Random:無作為に決める
- Volume-based Random : 過去に選ばれた経験確率 *p*(e_i→e_i) に従う
- Expertise Difference: 専門性の違いを用いる

既知データから 対数正規分布を用いてモデル推定する。

Figure 2: Task Transfer Frequency vs. Expertise Difference.


決断ルールのまとめ

	Task-Neutral Routing (TNR)	Task-Specific Routing (TSR)
Uniform Random (UR)	TNR^{ur}	TSR ^{ur}
Volume-biased Random (VR)	TNR ^{vr}	TSR vr
Expertise Difference (EX)	TNR ex	TSR ex

丸投げ先の決め方は、全部で6種類ある。

各エキスパートが これらから一つの戦略を採用する。

Expert Decisionの確率モデル

 $Z_{i,t}$: エキスパートiがタスクtにおいて 採用する戦略ラベル(多項分布)

β^{i,t}:エキスパートiがタスクtにおいて タスクの転送先の確率 (隣接エキスパート数×6の行列)

 μ 、 σ^2 : EXの対数正規分布パラメータ

 α 、 ϑ_i : ディレクリ分布と多項分布 のパラメータ

これらのパラメータを変分ベイズ法で推定する。

<u>Complete Timeの予測</u>

$$\widehat{CT}_t = \sum_{m=1}^{L} m \prod_{n=1}^{m-1} [1 - P(r_n, t)] P(r_m, t)$$

m番目のエキスパートが問題を解く確率

Lの増加とともの確率は指数的に小さくなるので、 Lが大きく設定する。(実験ではL=10とした。)

数值実験

データセット: a problem ticketing system in an IBM IT service department throughout 2006.

ID	Entry	Time	Expert
599	New ticket: the available space	9/14/06	IN039
	on the /var file system is low	5:57:16	
599	(operations by IN039)		IN039
599	Ticket 599 transferred		IN039
	to SAV59		
599	(operations by SAV59)	•••	SAV59
599	Ticket 599 transferred		SAV59
	to SAV4F		
599	(operations by SAV4F)		SAV4F
599	Problem resolved: free up	9/14/06	SAV4F
	disk space in the file system	9:57:31	

Table 1: The Lifetime of An Example Task.

Datasets	# of	# of	% of tasks with CT			
Datasets	tasks	experts	=2	=3	=4	≥ 5
DB2	26,740	55	44.2	34.3	16.5	5.0
WebSphere	65,786	234	39.0	36.2	20.0	4.8
AIX	120,780	404	40.0	39.4	14.2	6.4

Table 2: Three Datasets on Ticket Resolution.

完了時間の予測実験

以下の2種類の指標で予測誤差を調べた

Mean Absolute Error (MAE).

$$MAE = \frac{1}{|\text{Test Set}|} \sum_{t \in \text{Test Set}} |\widehat{CT}_t - CT_t|$$

Step Loss Measure (SL)

$$SL = \frac{1}{|\text{Test Set}|} \sum_{t \in \text{Test Set}} \mathbb{1}(|\widehat{CT}_t - CT_t| > 1)$$

完了時間の予測誤差

DD9			
	MAD	TT (104)	
- \ /		$LL(\times 10^4)$	
		-0.28	
4.56	0.29	-0.25	
1.77	0.08	-0.07	
3.05	0.14	-0.10	
9.89	0.68	-0.61	
14.78	0.80	N/A	
13.77	0.84	N/A	
WebSphere			
Step Loss (%)	MAE	$LL(\times 10^4)$	
4.77	0.40	-0.88	
4.56	0.37	-0.80	
1 44	0.07	-0.19	
1.44	0.01	-0.13	
2.31	0.11	-0.29	
2.31	0.11	-0.29	
2.31 7.55	0.11	-0.29 -0.81	
2.31 7.55 18.20	0.11 0.60 0.71	-0.29 -0.81 N/A	
2.31 7.55 18.20 17.02	0.11 0.60 0.71	-0.29 -0.81 N/A N/A $LL(\times 10^4)$	
2.31 7.55 18.20 17.02 AIX Step Loss (%) 4.46	0.11 0.60 0.71 0.80 MAE 0.37	-0.29 -0.81 N/A N/A LL(×10 ⁴) -0.41	
2.31 7.55 18.20 17.02 AIX Step Loss (%) 4.46 4.15	0.11 0.60 0.71 0.80 MAE 0.37 0.30	-0.29 -0.81 N/A N/A LL(×10 ⁴) -0.41 -0.35	
2.31 7.55 18.20 17.02 AIX Step Loss (%) 4.46	0.11 0.60 0.71 0.80 MAE 0.37	-0.29 -0.81 N/A N/A LL(×10 ⁴) -0.41	
2.31 7.55 18.20 17.02 AIX Step Loss (%) 4.46 4.15	0.11 0.60 0.71 0.80 MAE 0.37 0.30	-0.29 -0.81 N/A N/A LL(×10 ⁴) -0.41 -0.35	
2.31 7.55 18.20 17.02 AIX Step Loss (%) 4.46 4.15 1.99	0.11 0.60 0.71 0.80 MAE 0.37 0.30 0.15	-0.29 -0.81 N/A N/A LL(×10 ⁴) -0.41 -0.35 -0.17	
	3.05 9.89 14.78 13.77 WebSphere Step Loss (%) 4.77	Step Loss (%) MAE 4.11 0.30 4.56 0.29 1.77 0.08 3.05 0.14 9.89 0.68 14.78 0.80 13.77 0.84 WebSphere Step Loss (%) MAE 4.77 0.40 4.56 0.37	

Table 3: Effectiveness of Routing Models.

12.56

Bayesian regression

N/A

0.85

LL: Log Likelihood



Figure 4: Efficiency of TNR vs. TSR.

Collaboratorの最適化

どのエキスパートを最初に訓練したら、全体の仕事効率が上がるか?

【訓練者の選び方】

Random:無作為に選ぶ

Frequent Transferor: 最も良く仕事を割り振られる人

Least Efficient: 最も非効率な人(その人の後に続くルート長)

• 提案法:推定されたモデルにおいて、タスク解決能力を変更して 最も効率性が上昇する人を選ぶ

Methods	Efficiency Improvement (%)
Random	0.27
Frequent Transferrer	0.91
Least Efficient	1.21
Recommendation with Our Model	2.75

Table 5: Training Recommendation

論文に対するコメント

- ・ 論文がアクセプトされた理由は、アプリケーションの新規性 とそのモデル化だと思われる。
- とても革新的な結果、というよりは、皆が普通に思っている 通りのモデルと数値実験結果が得られている。 (普通こういったデータを持っていないので、IBMの強み?)
- 物足りないと思ったのは、「エキスパートが問題を解決する」 という事象がモデルに含まれていないこと。
- 個人的には、ネットワーク解析の研究に興味があって、 割りと面白いと思った。最後のCollaboratorの最適化の 考え方は、バイオに応用できないかな?